Question 1195349

 Find the equation of the line passing those the points ({{{10}}},{{{-27}}}) and ({{{-10}}},{{{-9}}}).

 Write your answer in the form:

 {{{y=mx+b}}}.......where {{{m}}} is a slope and {{{b}}} is {{{y}}}-intercept


since given two points, use them to find a slope 



 {{{m=(y[2]-y[1])/(x[2]-x[1])}}} .......the points are ({{{10}}},{{{-27}}}) and ({{{-10}}},{{{-9}}})

{{{m=(-9-(-27))/(-10-10)}}} 

{{{m=(-9+27)/(-20)}}} 

{{{m=18/(-20)}}} 

{{{m=-9/10}}} 


now use point slope equation 

{{{y-y[1]=m(x-x[1])}}}......substitute slope {{{m=-9/10}}}   and  given point ({{{-10}}},{{{-9}}})


{{{y-(-9)=-(9/10)(x-(-10))}}}


{{{y+9=-(9/10)(x+10)}}}


{{{y+9=-(9/10)x-(9/10)10)}}}


{{{y+9=-(9/10)x-9}}}


{{{y=-(9/10)x-9-9}}}


{{{y=-(9/10)x-18}}} -> your equation



{{{ drawing( 600, 600, -15, 15, -40, 40, circle(-10,-9,.125), locate(-10,-9,p(-10,-9)), circle(10,-27,.125), locate(10,-27,p(10,-27)),

graph( 600, 600, -15, 15, -40, 40, -(9/10)x-18)) }}}