Question 1194658
Sue leaves 20 minutes or one-third hour after Janet.  In that time, the distance between the two is {{{8(miles/hour)*(1/3)*hour=highlight_green((8/3)*miles)}}}.


If Janet catches up in x hours, then {{{(18-8)x=8/3}}};
{{{10x=8/3}}}
{{{x=8/30}}}{{{hours}}};


For number of minutes, {{{(8/30)*hour*60(minutes/hour)=highlight_green(16*minutes)}}}
and you can compute the time on the clock.

--
--
--


What time met?
{{{35+16}}}
{{{51}}}
<b>10:51AM</b>


What distance when met?
18 miles per hour for 16 minutes
{{{18(miles/hour)*(16/60)hour}}}
{{{(18*16)/60}}}{{{miles}}}
{{{(3*2*3*4*4)/(2*3*2*5)}}}
{{{(2*3*4)/5}}}
{{{24/5}}}

{{{highlight(4&4/5)}}}{{{highlight(miles)}}}