Question 1194469
The currency RM is the Malaysian ringgit, which is worth 
about 23 cents in US currency.
<pre>

Vacuums|  A |  B |
-------|----|----|limits
Number |  x |  y |  ↓
-------|----|----|------
E. hrs.| 4x | 3y | 240 |
-------|----|----|-----|
A. hrs.| 2x | 1y | 100 |
-------|----|----|------
Profit |700x|500y|

Maximize P = 700x + 500y  <--objective function

Subject to constraints:

4x + 3y ≤ 240
2x +  y ≤ 100
x ≥ 0, y ≥ 0

We draw the graphs of the two lines,
Put = in place of ≤

                   Intercepts
4x + 3y = 240    (0,80), (60,0)
2x +  y = 100   (0,100), (50,0)


{{{drawing(400,560,-2,8,-2,12,
locate(-.6,0,"(0,0)"),locate(4.8,0,50),locate(5.8,0,60),locate(-.5,8.1,80), locate(-.7,10.1,100),locate(3,4.3,"(30,40)"),locate(8,0,x), locate(-.3,12.1,y),
red(locate(1,3,matrix(2,1,SHADED,REGION))),
green(line(0,8,0,12),line(5,0,11,0),line(0,10,3,4),line(3,4,6,0)),
 
red(line(0,8,3,4),line(3,4,5,0),line(0,0,0,8),line(0,0,5,0))


)}}}

 Corner |
 point  |    P = 700x + 500y
--------|----------------------------------------------
  (0,0) |      700(0) + 500(0)  =     0 +     0 =     0
 (50,0) |     700(50) + 500(0)  = 35000 +     0 = 35000
(30,40) |     700(30) + 500(40) = 21000 + 20000 = 41000 <--max. profit
 (0,80) |      700(0) + 500(80) =     0 + 40000 = 40000 

Optimum solution: Make 30 A's and 40 B's with a max profit of RM 41000

Edwin</pre>