Question 1193734
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  37000\(1\,+\,\frac{0.03}{4}\)^{4t}\ =\ 38122.55]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \(1\,+\,\frac{0.03}{4}\)^{4t}\ =\ \frac{38122.55}{37000}]


Take the log of both sides:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\(1\,+\,\frac{0.03}{4}\)^{4t}\ =\ \ln\(\frac{38122.55}{37000}\)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (4t)\ln\(1\,+\,\frac{0.03}{4}\)\ =\ \ln\(\frac{38122.55}{37000}\)]



*[tex \LARGE \ \ \ \ \ \ \ \ \ \ t\ =\ \frac{\ln\(\frac{38122.55}{37000}\)}{4\cdot\ln\(1\,+\,\frac{0.03}{4}\)}]


You can do your own arithmetic.

																
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
*[illustration darwinfish.jpg]

From <https://www.algebra.com/cgi-bin/upload-illustration.mpl> 
I > Ø
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>