Question 1193730
.


An arbitrary quadrilateral on a plane is a parallelogram if and only if


    - the opposite sides are parallel;
    - the opposite sides are of equal length;
    - each diagonal divides it in two congruent triangles;
    - the diagonals bisect each other;
    - the opposite angles are congruent;
    - the sum of any two consecutive angles is equal to 180°.



On parallelograms and their properties see and read the lessons

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/In-a-parallelogram-each-diagonal-divides-it-in-two-congruent-triangles.lesson>In a parallelogram, each diagonal divides it in two congruent triangles</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Properties-of-the-sides-of-a-parallelogram.lesson>Properties of the sides of a parallelogram</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Properties-of-the-sides-of-parallelograms.lesson>Properties of the sides of parallelograms</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Properties-of-diagonals-of-parallelograms.lesson>Properties of diagonals of parallelograms</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Opposite-angles-of-a-parallelogram-are-congruent.lesson>Opposite angles of a parallelogram</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Consecutive-angles-of-a-parallelogram.lesson>Consecutive angles of a parallelogram</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Parallelograms/PROPERTIES-OF-PARALLELOGRAMS.lesson>PROPERTIES OF PARALLELOGRAMS</A>

in this site.



By the definition, <B>a rhombus is a parallelogram which has all the sides of the same length</B>.


As a parallelogram, any rhombus has all the properties of a parallelogram listed above.


Rhombis (plural of <I>rhombus</I>) have additional properties.


&nbsp;&nbsp;&nbsp;&nbsp;- -in a rhombus, each diagonal divides it in two congruent isosceles triangles.

&nbsp;&nbsp;&nbsp;&nbsp;- in a rhombus, the two diagonals are perpendicular. 

&nbsp;&nbsp;&nbsp;&nbsp;- in a rhombus, the diagonals are the angle bisectors. 



On rhombis and their properties see and read the lessons

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Diagonals-of-a-rhombus-are-perpendicular.lesson>Diagonals of a rhombus are perpendicular</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Parallelograms/Diagonals-of-a-rhombus-bisect-its-angles.lesson>Diagonals of a rhombus bisect its angles</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Parallelograms/PROPERTIES-OF-RHOMBIS.lesson>PROPERTIES OF RHOMBIS</A>

in this site.



Also, &nbsp;you have this free of charge online textbook on Geometry

&nbsp;&nbsp;&nbsp;&nbsp;<A HREF=https://www.algebra.com/algebra/homework/Triangles/GEOMETRY-your-online-textbook.lesson>GEOMETRY - YOUR ONLINE TEXTBOOK</A> 

in this site.


The referred lessons are the part of this textbook under the topics "<U>Properties of parallelograms</U>"
and "<U>Properties of rhombis</U>".


Save the link to this online textbook together with its description


Free of charge online textbook in GEOMETRY
https://www.algebra.com/algebra/homework/Triangles/GEOMETRY-your-online-textbook.lesson


to your archive and use it when it is needed.