Question 112956
{{{(w+(3/4)w)/(w-(3/2)w)}}} Start with the given expression



{{{((4/4)w+(3/4)w)/(w-(3/2)w)}}} Rewrite the first {{{w}}} as {{{(4/4)w}}}




{{{((4/4)w+(3/4)w)/((2/2)w-(3/2)w)}}} Rewrite the second {{{w}}} as {{{(2/2)w}}}



{{{(((4+3)/4)w)/((2/2)w-(3/2)w)}}} Combine the terms {{{(4/4)w+(3/4)w}}} to get {{{(4+3)/4)w}}}



{{{((7/4)w)/((2/2)w-(3/2)w)}}} Add



{{{((7/4)w)/(((2-3)/2)w)}}} Combine the terms {{{(2/2)w-(3/2)w}}} to get {{{((2-3)/2)w}}}



{{{((7/4)w)/((-1/2)w)}}} Subtract 




{{{(7w/4)/(-w/2)}}} Multiply



{{{(7w/4)*(-2/w)}}} Multiply by the reciprocal



{{{(7*cross(w)/4)*(-2/cross(w))}}} Cancel like terms



{{{-7/2}}} Simplify



So {{{(w+(3/4)w)/(w-(3/2)w)=-7/2}}}