Question 1190214

. The cost of four chairs and a small table is $648. The cost of six chairs and a large table is $1 196.
The cost of the large table is Twice the cost of the small table. Given that a is the cost, in dollars, of a
chair and b is the cost, in dollars, of a small table
(i) write a pair of simultaneous equations to represent the information given. (2mks)
(ii)calculate the cost of a chair and the cost of a large table. 
<pre><font size = 4>With "a" and "b" being the cost of a chair and a small table, respectively, the cost of a large table = 2b
We then get: 4a + b = 648 ------ eq (i)
Also, 6a + 2b = 1,196____2(3a + b) = 2(598)___3a + b = 598 ----- eq (ii)
Cost of a chair, or {{{highlight_green(matrix(1,3, a, "=", "$50"))}}} ----- Subtracting eq (ii) from (i)

6(50) + 2b = 1,196 ------ Substituting 50 for a in eq (ii)
<font color = red>Cost of a large table,</font> or 2b = 1,196 - 6(50) = 1,196 - 300 = <font color = green>$896</font></font></pre>