Question 1190046
-------------------------------------------------------------------
280 fish is introduced into a lake. This fish population grows according to a continuous exponential growth
model. There are 588 fish in the lake after 8 years.
(a) Let t be the time (in years) since the initial population is introduced,
and let y be the number of fish at time t.
---------------------------------------------------------------



(a)
{{{y=280*b^t}}}


{{{b^t=y/280}}}

{{{log((b^t))=log((y/280))}}}

{{{t*log((b))=log((y/280))}}}

{{{log((b))=(1/t)log((y/280))}}}


If base ten, then {{{log((b))=(1/8)log((588/280))}}}

{{{log((b))=0.0402774118}}}

{{{b=10^(0.0402774118)}}}

{{{b=1.097}}}



{{{highlight_green(y=280(1.097)^t)}}}