Question 1188984
<br>
(1) A standard algebraic method for finding the inverse of a function: switch the variables and solve for the new y.<br>
Given: {{{y=23/x^2}}}<br>
Switch variables:<br>
{{{x=23/y^2}}}<br>
Solve for y:<br>
{{{y^2=23/x}}}
{{{y=sqrt(23/x)}}}<br>
(2) An informal method, using the idea that an inverse function "un-does" what the function does.<br>
The given function does the following to the input:<br>
square it; take the reciprocal; multiply by 23<br>
{{{x}}} --> {{{x^2}}} --> {{{1/x^2}}} --> {{{23/x^2}}}<br>
The inverse function must do the opposite operations, in the opposite order:<br>
divide by 23; take the reciprocal; take the square root<br>
{{{x}}} --> {{{x/23}}} --> {{{23/x}}} --> {{{sqrt(23/x)}}}<br>