Question 1187474
<pre>
I will use <b>bold</b> <b>v</b>, <b>u</b>, and <b>w</b> to denote vectors, and
notation like {{{u[x]}}} to denote components of a vector (here x component of vector <b>u</b>)  

Hopefully it renders properly.


<b>u</b> = 2<b>i</b> - 3<b>j</b>           (1)

From <b>v</b> || <b>u</b>: <b>v</b> = 2c<b>i</b>-3c<b>j</b>   (2)
   where  c  is some scaler value.


From <b>w</b> perpendicular to <b>u</b>:  <b>w</b>&#x2219;<b>u</b> = 0
   which translates to
         2{{{w[x]}}} - 3{{{w[y]}}} = 0     (3)

We also want:  <b>w</b> + <b>v</b> = 4<b>i</b> + 4<b>j</b>    (4) 

(3) ==>  {{{ w[y] = (2/3)w[x] }}}

Now we can write, using (3) and (4):
 (5)   2c + {{{w[x]}}} = 4
 {6)  -3c + {{{(2/3)w[x]}}} = 4

Solving this for c gives  {{{c=-4/13}}}  which tells us via (2)
that <b>v</b> = (-8/13)<b>i</b> + (12/13)<b>j</b>


Now you can use (5) and (6) to solve for {{{w[x]}}} or plug  c into 
(4) and solve for {{{w[x]}}} and {{{w[y]}}} (I did it the latter way):

 <b>w</b> = (60/13)<b>i</b> + (40/13)<b>j</b>



Check:
I checked everything but you should do so as an exercise.
1.  Check that <b>w</b> + <b>v</b> = 4<b>i</b> + 4<b>j</b>
2.  Check that <b>w</b>&#x2219;<b>u</b> = 0  ({{{w[x]u[x] + w[y]u[y] = 0 }}})
3.  Check that |<b>v</b>&#x2219;<b>u</b>| = |<b>v</b>||<b>u</b>|