Question 1188068
 {{{P(x)=x^4-x^3-13x^2+x+12}}}

Find the table of values
just plug in any value of x in given polynomial and calculate P(x)
but,  if you factor it completely, you will get roots and you will have four values for x easy to use

{{{P(x)=(x - 1) (x + 1) (x + 3) (x - 4)}}} => roots are: {{{x=1}}},{{{ x=-1}}}, {{{x=-3}}}, and {{{x=4}}}
choose some more in between and make a table

{{{x}}}| {{{ P(x)}}} 
{{{-3}}}|{{{0}}}
{{{-2}}}|{{{ -18}}}.....................{{{P(x)=(-2)^4-(-2)^3-13(-2)^2+(-2)+12=-18}}}
{{{-1}}}|{{{0 }}}
{{{0}}}|{{{12}}}.................{{{P(x)=(0)^4-(0)^3-13(0)^2+(0)+12=12}}}
{{{4}}}| {{{0}}}
{{{5}}}|{{{192}}}..............{{{P(x)=(5)^4-(5)^3-13(5)^2+(5)+12=192}}}