Question 1187870
<pre>
Each zero 'a' gives a factor 'x-a', and noting complex zeros come in
conjugate pairs:

(x-(-5+2i))(x-(-5-2i))*(x+2)(x+2)

... after combining the terms with complex roots, and multiplying (x+2)(x+2) ...

= {{{(x^2+10x+29)}}} * {{{(x^2+4x+4)}}}

... after expansion and subsquent simplification ...

= {{{ x^4+14x^3+73x^2+156x+116 }}}

( checked on WolframAlpha:  ' factor x^4+14x^3+73x^2+156x+116 ' yields
{{{ (x+2)^2 (x+(5-2i))(x+(5+2i)) }}}  )