Question 1187503
.
If 6^(2x+1) = k, then what does 6^(x+3) equal?
~~~~~~~~~~~~~~


<pre>
Since  {{{6^(2x+1)}}} = k,  it implies


   {{{6 * 6^(2x)}}} = k

   {{{6^(2x)}}} = {{{k/6}}}

   {{{6^x}}} = {{{sqrt(k/6)}}}.


THEREFORE,  {{{6^(x+3)}}} = {{{6^3*6^x}}} = {{{216*sqrt(k/6)}}}.    <U>ANSWER</U>
</pre>

Solved, answered and explained.