Question 1187287
(1) Given Major axis ={{{24ft}}} , Minor Axis ={{{16ft}}}
(2) Required to find Focal distance ={{{c}}}, and distance between foci ={{{2c}}}
(3) Graph/Illustration
{{{drawing(300,250,-15,15,-12.5,12.5,
grid(0),
arc(0,0,24,16,0,360),
circle(8.94,0,0.4), circle(-8.94,0,0.4))}}}
(4) Equation to be used
{{{a^2=b^2+c^2}}} where
{{{a}}}=semi-major axis = major axis/2,
{{{b}}}=semi-minor axis = minor axis/2
{{{c}}}=focal distance distance from the center of the ellipse to each focus
(5) Computation
{{{a=24ft/2=12ft}}} {{{b=16ft/2=8ft}}}
{{{a^2=b^2+c^2}}} --> {{{c^2=a^2-b^2}}} 
{{{c^2=(12ft)^2-(8ft)^2}}} --> {{{c^2=144ft^2-64ft^2}}} --> {{{c^2=80ft^2}}} --> {{{c=sqrt(208ft^2)}}} --> {{{c=8.944ft)}}} --> {{{c=highlight(8.9ft)}}}
{{{2c=2*8.944ft}}} --> {{{c=17.888ft}}} {{{2c=highlight(17.9ft)}}}
(6) Final answer
The stands should be located {{{highlight(8.9ft)}}} from the center of the room.
The stands will be {{{highlight(17.9ft)}}} apart (rounding the final result, not doubling the rounded value for c).