Question 1186647
.
Find the z-score that separates the highest 44% of the values of a standard normal random variable from the rest.
Give your answer as a decimal, rounded to two decimal places.
~~~~~~~~~~~~~



Use the normal distribution table

https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf



From the  Table,  find the input entries  that provide the closest values 

to value   (1-0.44) = 0.56   in the  Table.


There are  2  (two,  TWO)  such entries :   one positive and one negative. 


Of these two entries,  you need the highest of them,  i.e.  POSITIVE  entry.


-------------


That's  all.


So simple . . . 



///////////


<H3>M E M O R I Z E &nbsp;(&nbsp;!&nbsp;)</H3>

    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In this problem,  &nbsp;you work  &nbsp;&nbsp;B &nbsp;A &nbsp;C &nbsp;K &nbsp;W &nbsp;A &nbsp;R &nbsp;D &nbsp;&nbsp;:


    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;you take the value from the  &nbsp;Table;  &nbsp;then you find the appropriate entry value &nbsp;(&nbsp;!&nbsp;)



See this link


https://sajeewasp.com/the-z-score/