Question 1185497
<br>
Your expression is<br>
{{{49a^6-28a^3b+4b^2-4c^(-4)}}}<br>
It is not a polynomial, because polynomials can't have negative exponents.<br>
However, the expression is factorable using the pattern P^2-Q^2=(P+Q)(P-Q).<br>
{{{49a^6-28a^3b+4b^2-4c^(-4)}}}<br>
{{{(49a^6-28a^3b+4b^2)-(4c^(-4))}}}<br>
{{{(7a^3-2b)^2-((2c^(-2))^2)}}}<br>
{{{((7a^3-2b)+2c^(-2))((7a^3-2b)-2c^(-2))}}}<br>
{{{(7a^3-2b+2c^(-2))(7a^3-2b-2c^(-2))}}}<br>
Note that the two factors are also not polynomials, since they both contain negative exponents.<br>