Question 16664
{{{4^(n+3)*16^n=8^(3n)}}}
={{{4^n*4^3*(2*8)^n=8^(3n)}}}
={{{4^n*4^3*2^n*8^n=8^(3n)}}}
={{{4^n*2^n*4^3*8^n=8^(3n)}}}
={{{(4*2)^n*8^2*8^n=8^(3n)}}}
={{{8^n*8^2*8^n=8^(3n)}}}
={{{8^(n+2+n)=8^(3n)}}}
={{{8^(2n+2)=8^(3n)}}}
_______________
SO,
2n+2=3n
2=3n-2n
2=n
_______________

Thus, solution for this equation is n=2