Question 1185267


if you have

{{{y=-2(1/3)^x-2}}}  compare to the graph of the parent function{{{ y=b^x}}}

{{{y=a(b)^(x-h)+k }}}

where {{{a}}} is the vertical stretch  by factor {{{a}}}if {{{a>0}}}, and vertical shrink if {{{0<a<1}}} 

{{{h }}}is the horizontal shift

and {{{k}}} is the vertical shift

{{{y=-2(1/3)^x-2 }}}

so, parent function is {{{y=(1/3)^x }}}


 {{{a=-2}}}  =>the graph of the parent function reflected over x-axis and vertically stretched  by factor {{{2}}}

{{{h=0}}}=>no  horizontal shift

{{{k=-2}}}=>   the graph of the parent function moves {{{2}}} units down


{{{ graph( 600, 600, -10, 10, -10, 10, (1/3)^x, -2(1/3)^x-2) }}}