Question 1185070
1. t= √(2a/x)
<pre>
Let t = second
Let a = meter/second<sup>2</sup>
Let x = meter

{{{second= sqrt(2(meter/second^2)/(meter^""))}}}
{{{second= sqrt(2(meter^""/second^2)*(1^""/meter))}}}
{{{second= sqrt(2(cross(meter)^""/second^2)*(1^""/cross(meter)))}}}
{{{second= sqrt(2(1^""/second^2))}}}
{{{second= (1/second)sqrt(2)}}}
{{{second= sqrt(2)(1/second)}}}

Even though we ignore the constant, the units on the left and right are not
the same so they are not dimensionally consistent.</pre>
2. v= v<sub>0</sub>+at<pre>
Let v = meter/second

{{{meter/second=meter/second+(meter^""/second^2)^""second}}}

{{{meter/second=meter/second+(meter^""/second^cross(2))^""cross(second)}}}

{{{meter/second=meter/second}}}

Yes, they have the same units on the left and right, so they are dimensionally consistent.</pre>
3. v=2ax<pre>

{{{meter/second=2(meter^""/second^2)meter}}}

{{{meter/second=2(meter^""/second^2)meter}}}

{{{meter/second=2(meter^2/second^2)}}}

Even though we ignore the constant, the units on the left and right are not
the same so they are not dimensionally consistent.

Edwin</pre>