Question 1185098
A six-sided die is printed with the numbers 1,2,3,5,8 and 13. Roll the 
dice once- what is the probability of getting an even number?<pre>

1, <font color="red"><b>2</b></font>, 3, 5, <font color="red"><b>8</b></font>, 13

Count the red ones, get 2.  Count them all, get 6.  That's a probability of
2 out of 6, or 2/6, which reduces to 1/3.</pre>
roll the die twice and add the numbers; what is the probability of getting
an odd sum?<pre>
 (1,1)  <font color="red"><b>(1,2)</b></font>  (1,3)  (1,5)  <font color="red"><b>(1,8)</b></font>  (1,13)  
 
 <font color="red"><b>(2,1)</b></font>  (2,2)  <font color="red"><b>(2,3)</b></font>  <font color="red"><b>(2,5)</b></font>  (2,8)  <font color="red"><b>(2,13)</b></font>
 
 (3,1)  <font color="red"><b>(3,2)</b></font>  (3,3)  (3,5)  <font color="red"><b>(3,8)</b></font>  (3,13) 
 
 (5,1)  <font color="red"><b>(5,2)</b></font>  (5,3)  (5,5)  <font color="red"><b>(5,8)</b></font>  (5,13)
 
 <font color="red"><b>(8,1)</b></font>  (8,2)  <font color="red"><b>(8,3)</b></font>  <font color="red"><b>(8,5)</b></font>  (8,8)  <font color="red"><b>(8,13)</b></font>

(13,1) <font color="red"><b>(13,2)</b></font> (13,3) (13,5) <font color="red"><b>(13,8)</b></font> (13,13)

Count the red ones, get 16. Count them all, get 36.  That's a probability of
16 out of 36, or 16/36, which reduces to 4/9.</pre>

</pre>