Question 1184603
<pre>
x = chirps, y = degrees

>>>When crickets chirp 124 times a minute, it is about 68 degrees Fahrenheit. 

So when x = 124, y = 68.  So the graph of the equation contains the point
(124,68)

>>>When they chirp 172 times a minute, it is about 80 degrees Fahrenheit.

So when x = 172, y = 80.  So the graph of the equation contains the point
(172,80)

We assume the graph of the equation is a straight line.

So we use the slope formula to find the slope of the line

{{{m}}}{{{""=""}}}{{{(y[2]-y[1])/(x[2]-x[1])}}}

{{{m}}}{{{""=""}}}{{{((80)-(68))/((172)-(124))}}}

{{{m}}}{{{""=""}}}{{{(12)/(48)}}}{{{""=""}}}{{{1/4}}}

We use the point-slope equation:

{{{y-y[1]}}}{{{""=""}}}{{{m(x-x[1])}}}

{{{y-(68)}}}{{{""=""}}}{{{expr(1/4)(x-(124)^"")}}}

{{{y-68}}}{{{""=""}}}{{{expr(1/4)x-expr(1/4)(124)}}}

{{{y-68}}}{{{""=""}}}{{{expr(1/4)x-31}}}

Add 68 to both sides

{{{y}}}{{{""=""}}}{{{expr(1/4)x+37}}}

>>>How warm is it when the crickets are chirping 150 times a minute?

Substitute x = 150:

{{{y}}}{{{""=""}}}{{{expr(1/4)(150)+37}}}

{{{y}}}{{{""=""}}}{{{37.5+37}}}

{{{y}}}{{{""=""}}}{{{74.5}}}{{{degrees}}}{{{Fahrenheit}}}

Edwin</pre>