Question 1184163
<pre>

For any matrix A, where n is the order of the matrix

{{{(det(A)^"")^(n-1)}}}{{{""=""}}}{{{det(adj(A)^"")}}}

Substitute A=X and n=3 = (the order of X)

{{{(det(X)^"")^(3-1)}}}{{{""=""}}}{{{det(adj(X)^"")}}}

{{{(det(X)^"")^2}}}{{{""=""}}}{{{25}}}

{{{(det(X)^"")^2}}}{{{""=""}}}{{{25}}}

{{{det(X)}}}{{{""=""}}}{{{"" +- 5}}}

The determinant of the inverse of a given invertible matrix is
the reciprocal of the determinant of the given invertible matrix.

{{{det(X^(-1))}}}{{{""=""}}}{{{"" +- 1/5}}}

Edwin</pre>