Question 1183507
I will show you by way of a conditional proof.  In a conditional proof, you make assumptions and see where the premises take you.  Only the conclusion(s) of the conditional portion (which are prefixed with ::) can be carried into the main argument.

<pre>
1.  F → (O • B)    Premise
2.  S ↔ ~B         Premise
3.  W ↔ ~S         Premise
// therefore F → W
4.:: F             Conditional Proof (CP) assumption
5.:: O • B         4,1 Modus Ponens (MP)
6.:: B             5  Simplification (SIMP)
7.:: S --> ~B      2  Biconditional elimination
8.:: ~S            6,7  Modus Tollens (MT)
9 :: ~S --> W      3  Biconditional elimination
10.:: W            8,9 MP
11.:: F --> W      4-10 CP
12. F --> W        4-11 CP (discharges CP assumptions)

Proof complete