Question 1183444
<font face="Times New Roman" size="+2">


Convert each of the ordered pairs to a single column matrix: 


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \begin{pmatrix} x \\ y \end{pmatrix}]


Then multiply the reflection across the *[tex \Large x]-axis transformation matrix:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}]


For example, for point D: (-4,4):



*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\,\cdot\,\begin{pmatrix} -4 \\ 4 \end{pmatrix}\ =\ \begin{pmatrix} -4 \\ -4 \end{pmatrix}]


Hence D': (-4,-4)


You can do the other two yourself.


																
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
*[illustration darwinfish.jpg]

From <https://www.algebra.com/cgi-bin/upload-illustration.mpl> 
I > Ø
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>