Question 1182907
Joint variation problems are solved using the equation 
{{{y = kxw}}}

{{{W}}} ..........{{{X}}} ..........{{{Y}}}
{{{45.4}}}... {{{18.2}}} ...{{{121}}}
{{{19.5}}}... {{{41.5}}}... ___
___ ....{{{8.8}}}.... {{{155}}}
{{{12.4}}}.... ___ ...{{{79.9}}}

use first row to calaculate {{{k}}}


{{{121= k*18.2*45.4}}}

121= k*826.28

{{{k=121/826.28}}}

{{{k=0.14643946362008037}}}

then

{{{y = 0.14643946362008037*x*w}}}

{{{y= 0.14643946362008037*41.5*19.5}}}

{{{y=118.5061359345500394225}}}

approximately {{{y=118.5}}}


{{{155= 0.14643946362008037*8.8*w}}}

{{{155= 1.288667279856707256*w}}}

{{{w=155/1.288667279856707256}}}

{{{w=120.2793}}}

approximately {{{w=120.3}}}


{{{y = 0.14643946362008037*x*w}}}

{{{79.9= 0.14643946362008037*x*12.4}}}

{{{79.9 = 1.81585* x}}}

{{{x=79.9/1.81585}}}

{{{x=44.00143183633}}}

approximately  {{{x=44}}}


complete table:


{{{W}}} ..........{{{X}}} ..........{{{Y}}}
{{{45.4}}}... {{{18.2}}} ...{{{121}}}
{{{19.5}}}... {{{41.5}}}... {{{118.5}}}
{{{120.3}}} ....{{{8.8}}}.... {{{155}}}
{{{12.4}}}.... {{{44}}} ...{{{79.9}}}