Question 1182547

Compute for the value of {{{x}}}, 

{{{(tan (theta) + cot (theta))^2 *sin^2 (theta) - tan^2 (theta) = x}}}...use identities for {{{tan (theta)}}},{{{ cot (theta)}}}


{{{(sin(theta) /cos(theta)+ cos(theta)/sin(theta) )^2 *sin^2 (theta) - (sin(theta) /cos(theta))^2 = x}}}


{{{(sin(theta)sin(theta)+ cos(theta)*cos(theta))/(sin(theta)*cos(theta)) )^2 *sin^2 (theta) - (sin^2(theta) /cos^2(theta)) = x}}}


{{{(sin^2(theta)+ cos^2(theta))/(sin(theta)*cos(theta)) )^2 *sin^2 (theta) - (sin^2(theta) /cos^2(theta)) = x}}}......use identity {{{sin^2(theta)+ cos^2(theta)=1}}}


{{{(1/(sin(theta)*cos(theta)) )^2 *sin^2 (theta) - (sin^2(theta) /cos^2(theta)) = x}}}


{{{(1/(sin^2(theta)*cos^2(theta)) ) *sin^2 (theta) - (sin^2(theta) /cos^2(theta)) = x}}}


{{{(sin^2 (theta)/(sin^2(theta)*cos^2(theta)) )  - (sin^2(theta) /cos^2(theta)) = x}}}


{{{(1/cos^2(theta))  - (sin^2(theta) /cos^2(theta)) = x}}}


{{{(1  - sin^2(theta) )/cos^2(theta) = x}}}.........use identity {{{1  - sin^2(theta) =cos^2(theta)}}}


{{{cos^2(theta)/cos^2(theta)) = x}}}


{{{1 = x}}}