Question 1182534
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  v(t)\ =\ \int\,a(t)\,dt\ +\ v_o]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  s(t)\ =\ \int\,\(v(t)\,+\,v_o\)\,dt\ +\ s_o]



*[tex \LARGE \ \ \ \ \ \ \ \ \ \  v(t)\ =\ \int\,(3t\,-\,5)\,dt\ +\ 0\ =\ \frac{3t^2}{2}\ -\ 5t]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  v(6)\ =\ \frac{3(6)^2}{2}\ -\ 5(6)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  v(6)\ =\ 24] m/s


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  s(t)\ =\ \int\,\frac{3t^2}{2}\ -\ 5t\ +\ 0\ =\  \frac{t^3}{2}\ -\ \frac{5t^2}{2}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  s(11)\ =\ 363] m


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  v(t)\ =\ 2]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \frac{3t^2}{2}\ -\ 5t\ =\ 2]


Solve for *[tex \LARGE  t]


CORRECTED

																
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
*[illustration darwinfish.jpg]

From <https://www.algebra.com/cgi-bin/upload-illustration.mpl> 
I > Ø
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>