Question 1181277


The first term of an arithmetic sequence is 9689 and the 100th term is 8996.

given:
{{{a[1]=9689}}}
{{{a[100]=8996}}}


a) Find the general term.

{{{a[n]= a[1]+d(n-1)}}}

use given terms to fin common difference {{{d}}}

{{{8996= 9689+d(100-1)}}}
{{{8996-9689=d(99)}}}
{{{-693=d(99)}}}
{{{d=-693/99}}}
{{{d= -7}}}

the general term formula is

{{{a[n]= 9689-7(n-1)}}}


b) Find the {{{110}}}th term.

{{{a[110]= 9689-7(110-1)}}}

{{{a[110]= 9689-7(109)}}}
{{{a[110]= 9689-763}}}
{{{a[110]= 8926}}}