Question 1181024


{{{F(x) = 3/(3-2x)}}} and {{{g(x)=2x/(2x-3)}}}

Determine {{{f*g}}}

{{{f*g=(3/(3-2x))(2x/(2x-3))}}}

{{{f*g=6x/((2x-3)(3-2x))}}}

{{{f*g=6x/(-(3-2x)(3-2x))}}}

{{{f*g=-6x/((3-2x)^2)}}}


 it's domain is all real numbers except those which make denominator equal to zero

so, {{{(3-2x)^2=0}}}

{{{3-2x=0}}}

{{{3=2x}}}

{{{x=3/2}}}

domain is  { {{{x}}} element {{{R }}}: {{{x<>3/2}}} }