Question 111024
{{{(7x+1)/(2x+5) + 1 = (10x-3)/3x}}}
{{{2x+5((7x+1)/(2x+5) + 1)=2x+5((10x-3)/3x)}}}
{{{(7x+1)+1(2x+5)=((2x+5)(10x-3))/3x}}}
{{{(7x+1)+(2x+5)=((2x+5)(10x-3))/3x}}}
{{{(7x+2x)+(5+1)=((2x+5)(10x-3))/3x}}}
{{{9x+6=((2x+5)(10x-3))/3x}}}
{{{3x(9x+6)=3x(((2x+5)(10x-3))/3x)}}}
{{{27x^2+18x=(2x+5)(10x-3)}}}
{{{27x^2+18x=2x(10x-3)+5(10x-3)}}}
{{{27x^2+18x=(20x^2-6x)+(50x-15)}}}
{{{27x^2+18x=20x^2+(-6x+50x)-15}}}
{{{27x^2+18x=20x^2+44x-15}}}
{{{27x^2-20x^2+18x=20x^2-20x^2+44x-15}}}
{{{7x^2+18x=0+44x-15}}}
{{{7x^2+18x=44x-15}}}
{{{7x^2+18x-44x=44x-44x-15}}}
{{{7x^2-26x=0-15}}}
{{{7x^2-26x=-15}}}
{{{7x^2-26x+15=0}}}

Using the quadratic formula,

{{{x=(26+-sqrt(26^2-4*7*15))/(2*7)}}}
{{{x=(26+-sqrt(676-420))/(14)}}}
{{{x=(26+-sqrt(256))/(14)}}}
{{{x=(26+- 16)/(14)}}}

{{{x=(26+16)/(14)}}} OR {{{x=(26-16)/(14)}}}
{{{x=42/14=3}}} or {{{x=10/14=5/7}}}

Hey, I just continue this later. Ook?


                          ...to be continued...