Question 1180201
<pre>
{{{dy/dx}}}{{{""=""}}}{{{(1+y)/(2+x)}}}

{{{(2+x)dy}}}{{{""=""}}}{{{(1+y)dx}}}

Divide through by (1+y)(2+×)

{{{dy/(1+y)}}}{{{""=""}}}{{{dx/(2+x)}}}

{{{int(dy/(1+y))}}}{{{""=""}}}{{{int(dx/(2+x))}}}

{{{ln(1+y^"")}}}{{{""=""}}}{{{ln(2+x^"")}}}{{{""+""}}}{{{ln(C^"")}}}

{{{ln(1+y^"")}}}{{{""=""}}}{{{ln(C(2+x)^""))}}}

{{{1+y}}}{{{""=""}}}{{{C(2+x)}}}

{{{y}}}{{{""=""}}}{{{C(2+x)-1}}}

This is the general solution.  

Now, while this is a form of choice c, {{{y}}}{{{""=""}}}{{{Ax+B}}}, 
there is only one arbitrary constant, so if A and B are both arbitrary
constants, choice c  cannot be the solution.  So I vote for 
e. none of the above.

Edwin</pre>