Question 110963

by the definition, the range of {{{f}}} is the set of all values that the function takes when {{{x}}} takes values in the domain. 

so, the range of {{{f(x)=x^2+x-2}}} if {{{x=-2}}},{{{x=0}}},{{{x=1}}} will be:

if {{{x=-2}}}

{{{f(-2)=(-2)^2+(-2)-2}}} 

{{{f(-2)= 4 - 4}}} 

{{{f(-2)= 0}}} 

{{{f(x)=x^2+x-2}}} if {{{x=0}}}

{{{f(0)=0^2+0-2}}} 

{{{f(0)= -2}}} 

{{{f(x)=x^2+x-2}}} if {{{x=1}}}

{{{f(x)=1^2+1 -2}}} 

{{{f(x)=1+1 -2}}} 

{{{f(x)=2 -2}}} 

{{{f(x)= 0}}}