Question 1179960

the circle whose center is at the origin and whose radius is {{{10}}}?

{{{x^2+y^2=10^2}}}

{{{x^2+y^2=100}}}


({{{-6}}},{{{4}}})

{{{(-6)^2+4^2=100}}}

{{{36+16=100}}}

{{{52<>100}}}=> the point ({{{-6}}},{{{4}}}) does not lie on the circle



({{{sqrt(10)}}}, {{{sqrt(10)}}})

{{{(sqrt(10))^2+(sqrt(10))^2=100}}}

{{{10+10=100}}}

{{{20<>100}}}=>the point ({{{sqrt(10)}}}, {{{sqrt(10)}}}) does not lie on the circle


({{{6}}},{{{-8}}})

{{{6^2+ (-8)^2=100}}}

{{{36+ 64=100}}}

{{{100=100}}}=>the point ({{{6}}},{{{-8}}})  lie on the circle



 {{{ drawing( 600, 600, -10, 10, -10, 10,
circle(6,-8,.12),locate(6,-8,p(6,-8)),

graph( 600, 600, -10, 10, -10, 10,-sqrt(100-x^2), sqrt(100-x^2))) }}}