Question 1179582


{{{u(x)=x^2 +6}}}
{{{w(x)=sqrt(x+9)}}}

Find the following:

({{{w }}}o {{{u}}}){{{(7)}}}
({{{u}}} o {{{w}}}){{{(7)}}}


({{{w }}}o {{{u}}}){{{(x)}}}={{{w(u(x))}}}

({{{w }}}o {{{u}}}){{{(x)}}}={{{w(x^2 +6)}}}

({{{w }}}o {{{u}}}){{{(x)}}}={{{sqrt(x^2 +6+9)}}}

({{{w }}}o {{{u}}}){{{(x)}}}={{{sqrt(x^2 +15)}}}

then
({{{w }}}o {{{u}}}){{{(7)}}}={{{sqrt(7^2 +15)}}}

({{{w }}}o {{{u}}}){{{(7)}}}={{{sqrt(49 +15)}}}
({{{w }}}o {{{u}}}){{{(7)}}}={{{sqrt(64)}}}
({{{w }}}o {{{u}}}){{{(7)}}}={{{8}}}


({{{u}}} o {{{w}}}){{{(x)}}}={{{u(w(x))}}}
({{{u}}} o {{{w}}}){{{(x)}}}={{{u(sqrt(x+9))}}}
({{{u}}} o {{{w}}}){{{(x)}}}={{{(sqrt(x+9))^2+6}}}
({{{u}}} o {{{w}}}){{{(x)}}}={{{x+9+6}}}
({{{u}}} o {{{w}}}){{{(x)}}}={{{x+15}}}

then
({{{u}}} o {{{w}}}){{{(7)}}}={{{7+15}}}
({{{u}}} o {{{w}}}){{{(7)}}}={{{22}}}