Question 1179277


Volume of the pyramid 

{{{V= (1/3)(10m*10m)*18m}}}

{{{V= 600m^3 }}}

If the top section {{{3m}}} high is removed, we need to deduct  the volume  the top section {{{v}}} from {{{V= 600m^3 }}}

{{{v=(1/3)*a^2*3m}}}

the side of the square base {{{s}}} the top section is proportional to the side of the square base of right pyramid in same ratio as altitudes




{{{s/10m=3m/18m}}}
{{{s/10m=1/6}}}
{{{s=10m/6}}}
{{{s=5m/3}}}

{{{v=(1/3)*(5m/3)^2*3m}}}
{{{v=(1/3)*(25m^2/9)*3m}}}
{{{v=(1/3)*(25/9)*3m^3}}}
{{{v=(25/9)m^3}}} 

the volume of the remaining frustum

{{{V[f]= 600m^3- (25/9)m^3}}}

{{{V[f]= 597.22m^3}}}