Question 1179104

 Find the interest earned on these amounts for {{{1}}} year at {{{4}}}% interest if interest is compounded quarterly.


${{{600}}}, ${{{24000}}}, ${{{180}}}, ${{{1500}}}


First, convert {{{R}}} as a percent to {{{r }}}as a decimal


{{{r = R/100}}}
{{{r = 4/100}}}
{{{r = 0.04}}} rate per year,

Then solve the equation for A

{{{A = P(1 + r/n)^(nt)}}}...............if ${{{P=600}}}
{{{A = 600(1 + 0.04/4)^(4*1)
{{{A = 600(1 + 0.01)^(4)}}}
{{{A = 624.36}}}

P (principal) = ${{{600}}}
I (interest) = ${{{24.36}}}




{{{A = P(1 + r/n)^(nt)}}}..............if ${{{P=24000}}}
{{{A = 24000(1 + 0.04/4)^(4*1)
{{{A = 24000(1 + 0.01)^4}}}
{{{A = 24974.49624}}}

P (principal) = ${{{24000}}}
I (interest) = ${{{974.50}}}



{{{A = P(1 + r/n)^(nt)}}}...............if ${{{P=180}}}
{{{A = 180(1 + 0.04/4)^(4*1)
{{{A = 180(1 + 0.01)^(4)}}}
{{{A = 187.31}}}

P (principal) = ${{{180}}}
I (interest) = ${{{7.31}}}



{{{A = P(1 + r/n)^(nt)}}}...............if ${{{P=1500}}}
{{{A = 1500(1 + 0.04/4)^(4*1)
{{{A = 1500(1 + 0.01)^(4)}}}
{{{A = 1560.91}}}

P (principal) = ${{{1500}}}
I (interest) = ${{{60.91}}}