Question 1178834

{{{y}}} is partly constant and partly varies as {{{x}}} 

{{{y = kx + c}}}

when {{{x=2}}},{{{y=5 }}}

{{{5= 2k + c}}}.......solve for {{{c}}}

{{{c=5-2k }}}...........eq.1

 when {{{x=3}}},{{{y=10 }}}

{{{10= 3k + c}}}.......solve for {{{c}}}

{{{c=10-3k }}}...........eq.2


from eq.1 and eq.2 we have


{{{5-2k =10-3k }}}......solve for {{{k}}}

{{{3k-2k =10-5 }}}

{{{k =5 }}}

go to

{{{c=5-2k }}}...........eq.1....substitute {{{k}}}

{{{c=5-2*5 }}}

{{{c=5-10 }}}

{{{c=-5 }}}

 the formula connecting {{{y}}} and {{{x}}} is:

{{{y = 5x -5}}}