Question 1177811

{{{(-3 + 4cos^2( x)) / (1 - 2sin(x)) = (a + b*sin(x))}}}


{{{(-3 + 4cos^2( x)) = (a + b*sin(x)) (1 - 2sin(x)) }}}


{{{-3 + 4cos^2( x) = a - 2a*sin(x)+ b*sin(x)-2b*sin^2(x)}}}.......use {{{cos^2( x)=1- sin^2( x)}}}


{{{-3+4(1- sin^2( x)) = a - 2a*sin(x)+ b*sin(x)-2b*sin^2(x)}}}


{{{-3+4- 4sin^2( x) = a - 2a*sin(x)+ b*sin(x)-2b*sin^2(x)}}}


{{{1- 4sin^2( x) = a - 2a*sin(x)+ b*sin(x)-2b*sin^2(x)}}}


{{{1 - (2sin(x))^2 = -(2sin(x) - 1) (a + b* sin(x))}}}


 {{{- ((2sin(x))^2-1) = -(2sin(x) - 1) (a + b* sin(x))}}}


{{{-cross((2sin(x)-1) )(2sin(x)+1)= -cross((2sin(x) - 1)) (a + b*sin(x))}}}


{{{2sin(x)+1=   b*sin(x) +a }}}=> will be true for all values of {{{x}}} only if {{{a=1}}} and {{{b=2}}}