Question 1177129
The area of a circle is equal to

{{{A=r^2*pi}}} where {{{r}}} is the radius


Find the area of the {{{10}}} inch-round quesadilla

we have diameter {{{d=10}}} inch=> radius {{{r=5}}} inch

substitute
{{{A=5^2*pi}}}
 
{{{A=25*pi}}} 


Find the area of the {{{4}}} inch-round quesadilla

we have diameter {{{d=4}}} inch=> radius {{{r=2}}} inch

substitute
{{{A=2^2*pi}}}
 
{{{A=4*pi}}}


Compare

half of the {{{10}}}-inch quesadilla is equal to ----> {{{A=25*pi/2=12.5pi}}} 

the entire {{{4}}}-inch quesadilla ---->{{{A=4*pi}}}

{{{12.5pi>4pi}}}

therefore, half of the {{{10}}}-inch quesadilla is {{{greater }}}than the entire {{{4}}}-inch quesadilla