Question 1176733
({{{6}}}, {{{-42}}}) and ({{{-4}}}, {{{-2}}}) are two points that lie on same line

an equation is

 {{{y =mx+b}}} where {{{m}}} is a slope and {{{b}}} is y-intercept

first use given points to find a slope

{{{m=(y[2]-y[1])/(x[2]-x[1])}}}

{{{m=(-2-(-42))/(-4-6)}}}

{{{m=(-2+42)/(-10)}}}

{{{m=-40/10}}}

{{{m=-4}}}


so far equation is

{{{y =-4x+b}}}.........use one point to find {{{b}}}

{{{-2 =-4(-4)+b}}}

{{{-2 =16+b}}}

{{{-2 -16=b}}}

{{{b=-18}}}


and, equation is

{{{y =-4x-18}}}


{{{drawing ( 600, 600, -15, 15, -50, 50,
circle(6,-42,.13),circle(-4,-2,.13),
locate(6,-42,p(6,-42)),locate(-4,-2,p(-4,-2)),
graph( 600, 600, -15, 15, -50, 50, -4x-18)) }}}