Question 1176070
<pre>

{{{  (ax - b) / c - (bx + c) / a }}} = {{{ abc  }}}

Multiply both sides by ac:
{{{  a(ax-b) - c(bx+c) }}} = {{{ a^2bc^2 }}}

Expand LHS:
{{{ (a^2x-ab) - (bcx +c^2) }}} = {{{ a^2bc^2 }}}

We are solving for x, right?  Bring terms involving 'x' together,
move others to RHS:
{{{  (a^2x - bcx) }}} = {{{ a^2bc^2 +ab +c^2 }}}

Factor out 'x':
{{{  (a^2 - bc)x }}} = {{{ a^2bc^2 +ab +c^2 }}}

Divide both sides by {{{ a^2-bc }}}
{{{   x }}} = {{{ ( a^2bc^2 +ab +c^2 )/ ( a^2 - bc ) }}}  ; {{{ a^2-bc <> 0 }}}


EDIT: fixed sign error on c^2 on RHS (had -, should have been +)