Question 1175466
from {{{x= -3}}} to {{{x=2}}}


{{{int((x^3+x^2-2x )dx)}}}={{{ int((x^3)dx)}}} +{{{ int((x^2 )dx)}}} +{{{ int((-2x)dx) }}}

{{{int((x^3+x^2-2x )dx)}}}={{{ int((x^3)dx)}}} +{{{ int((x^2 )dx)}}} -{{{ int((2x)dx) }}}


{{{ int( (x^3)dx)}}}={{{-65/4}}}....you get that when you apply the Power Rule :
{{{int( x^a*dx)}}}={{{x^(a+1)/(a+1)}}}, where {{{a<> -1}}}

same with

{{{ int( (x^2)dx)}}} ={{{35/3}}}

{{{ int( (2x)dx)}}} ={{{-5}}}

{{{ int( (x^3+x^2-2x )dx)}}} ={{{-65/4+35/3-5}}}

{{{ int( (x^3+x^2-2x )dx )}}} ={{{5/12}}}

{{{ int( (x^3+x^2-2x )dx )}}}  ≈{{{ 0.41667}}}