Question 1174688

{{{3x^4+2x^2+3=2x^4-2x^2+8}}}

{{{3x^4+2x^2+3-2x^4+2x^2-8=0}}}

{{{x^4+4x^2-5=0}}}

{{{x^4-x^2+5x^2-5=0}}}

{{{(x^4-x^2)+(5x^2-5)=0}}}

{{{x^2(x^2-1)+5(x^2-1)=0}}}

{{{(x^2+5)(x^2-1)=0}}}

{{{(x^2+5)(x-1)(x+1)=0}}}

solutions:

if {{{(x^2+5)=0 }}}=> {{{x^2=-5}}} => {{{x=sqrt(-5)}}} => {{{x=i*sqrt(5)}}} or {{{x= -i*sqrt(5)}}}

if {{{(x-1) =0}}}=>{{{ x=1}}}
if {{{(x+1)=0}}}=> {{{x=-1}}}

so, real roots are:
{{{x=1}}}
{{{x=-1}}}

and complex roots are:
{{{x=i*sqrt(5)}}} 
{{{x= -i*sqrt(5)}}}