Question 1174638

4. 

shift {{{f(x) = sin(x) }}}left {{{7/2}}} units and down{{{ 3 }}}units.

rule:
{{{y = f (x + c)}}} : shift the graph of {{{y = f (x)}}} to the left by {{{c}}} units
{{{y = f (x) - c }}}: shift the graph of {{{y = f (x) }}}down by {{{c}}} units

{{{f(x) = sin(x+7/2) -3}}}

{{{ graph( 600, 600, -5, 5, -5, 5, sin(x), sin(x+7/2) -3) }}}



5. shift {{{f(x) = cos(x) }}}right {{{4/5}}} units and up {{{pi/6}}} units

rule:
{{{y = f (x -c) }}}: shift the graph of {{{y = f (x) }}}to the right by {{{c}}} units
{{{y = f (x) +c }}}: shift the graph of {{{y = f (x) }}} up by {{{c}}} units

 {{{f(x) = cos(x-4/5)+pi/6 }}}

{{{ graph( 600, 600, -5, 5, -5, 5, cos(x), cos(x-4/5)+pi/6 ) }}}