Question 1173813
<pre>
Instead of doing your problem for you, I'll do one exactly like it,
step-by-step that you can use as a model to go by:
</pre>
The point P(x, y) is on the unit circle in Quadrant IV. 
If x = sqrt(65)/9, find y.<pre>

{{{x^2}}}{{{""+""}}}{{{y^2}}}{{{""=""}}}{{{1}}}
{{{(sqrt(65)/9)^2}}}{{{""+""}}}{{{y^2}}}{{{""=""}}}{{{1}}}
{{{65/81}}}{{{""+""}}}{{{y^2}}}{{{""=""}}}{{{1}}}
{{{65}}}{{{""+""}}}{{{81y^2}}}{{{""=""}}}{{{81}}}
{{{81y^2}}}{{{""=""}}}{{{81}}}{{{""-""}}}{{{65}}}
{{{81y^2}}}{{{""=""}}}{{{16}}}
{{{y^2}}}{{{""=""}}}{{{16/81}}}
{{{y}}}{{{""=""}}}{{{"" +- sqrt(16/81)}}}
{{{y}}}{{{""=""}}}{{{"" +- sqrt(16)/sqrt(81)}}}
{{{y}}}{{{""=""}}}{{{"" +- 4/9}}}

Since all points in Quadrant IV are (+,-), the 
y-coordinate is {{{-4/9}}}

Now do yours the exact same way.

Edwin</pre>