Question 1173478
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\(\frac{C(t)}{C_o}\)\ =\ -kt]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\( C(t) \)\ -\ \ln\(C_o\)\ =\ -kt]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\( C(t) \)\ =\ \ln\(C_o\)\ -\ kt]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ e^{\ln\( C(t) \)}\ =\ e^{\ln\(C_o\)\ -\ kt}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ C(t)\ =\ \frac{C_o}{e^{kt}}]


																
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
*[illustration darwinfish.jpg]

From <https://www.algebra.com/cgi-bin/upload-illustration.mpl> 
I > Ø
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>