Question 1172294
.
<pre>

The polar form is  {{{-sqrt(3) - i}}} = r * ( cos(a) + i*sin(a) ),

where "r" is the polar radius and "a" is the polar angle.
.


So, our goal is to find the polar radius r and the polar angle "a".



    r = {{{sqrt(x^2 + y^2)}}} = {{{sqrt((-sqrt((3))^2 + (-i)^2))}}} = {{{sqrt(3+1)}}} = {{{sqrt(4) }}} = 2.


    tan(a) = {{{y/x}}} = {{{(-1)/(-sqrt(3))}}} = {{{1/sqrt(3)}}} = {{{sqrt(3)/3}}}.



Therefore,  a = {{{7pi/6}}}    ( taking into account that the angle "a" is in QIII ).



Thus the polar form is, finally,  {{{-sqrt(3) - i}}} = {{{2*(cos(7pi/6) + i*sin(7pi/6))}}} = (2, {{{7pi/6}}}) = {{{2*cis(7pi/6)}}}.    <U>ANSWER</U>
</pre>

Solved.


----------------


There is a bunch of my lessons on complex numbers

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Complex-numbers-and-arithmetical-operations.lesson>Complex numbers and arithmetical operations on them</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Complex-plane.lesson>Complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Addition-and-subtraction-of-complex-numbers-in-complex-plane.lesson>Addition and subtraction of complex numbers in complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Multiplication-and-division-of-complex-numbers-in-complex-plane-.lesson>Multiplication and division of complex numbers in complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Raising-a-complex-number-to-an-integer-power.lesson>Raising a complex number to an integer power</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/How-to-take-a-root-of-a-complex-number.lesson>How to take a root of a complex number</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Solution-of-the-quadratic-equation-with-real-coefficients-on-complex-domain.lesson>Solution of the quadratic equation with real coefficients on complex domain</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/How-to-take-a-square-root-of-a-complex-number.lesson>How to take a square root of a complex number</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Solution-of-the-quadratic-equation-with-complex-coefficients-on-complex-domain.lesson>Solution of the quadratic equation with complex coefficients on complex domain</A>


&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problems-on-taking-roots-of-complex-numbers.lesson>Solved problems on taking roots of complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problems-on-arithmetic-operations-on-complex-numbers.lesson>Solved problems on arithmetic operations on complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problem-on-taking-square-roots-of-complex-numbers.lesson>Solved problem on taking square root of complex number</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Miscellaneous-problems-on-complex-numbers.lesson>Miscellaneous problems on complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Advanced-problem-in-complex-numbers.lesson>Advanced problem on complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problems-on-de%27Moivre-formula.lesson>Solved problems on de'Moivre formula</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/tutors/18-Calculating-1sin%281%B0%29%2B2sin%282%B0%29%2B3sin%283%B0%29%2B-%2B180sin%28180%B0%29.lesson>Calculating the sum 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°)</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/An-equation-in-complex-numbers-which-HAS-NO-a-solution.lesson>A curious example of an equation in complex numbers which HAS NO a solution</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solving-one-non-standard-equation-in-complex-numbers.lesson>Solving one non-standard equation in complex numbers</A>

in this site.


Also, &nbsp;you have this free of charge online textbook in ALGEBRA-II in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A>.


The referred lessons are the part of this online textbook under the topic &nbsp;"<U>Complex numbers</U>".



Save the link to this textbook together with its description


Free of charge online textbook in ALGEBRA-II
https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson


into your archive and use when it is needed.