Question 1171792
<pre>
1. A v B            Premise
2. A <--> (C & D)   Premise
3. B --> (D & G)    Premise
::4. A              Conditional Proof (CP) assumption #1
::5. (A --> (C & D)) & ((C & D) --> A)   2 Biconditional Equivalence (not sure of proper term)    
::6. (A --> (C & D))     5  Simplification (SIMP)
::7.  C & D              6,4 Modus Ponens (MP)
::8. D                   7  SIMP
::9. A --> D             4-8, CP 
::9. B                   CP assumption #2
::10. D & G              3,9  MP
::11. D                  10  SIMP
::12. B --> D            9-11 CP
::13. (A v B) --> D      4-12 CP Proof By Cases (PBC)
14. (A v B) --> D        4-13 CP (discharges CP assumptions)
15. D                    14,1  MP      

What does this proof do?  Lines 4-8 show if we assume A true, D is true (if A then D).  Lines 9-13 show "if B then D", therefore "if (A v B) then D" is true because we've covered the two possible cases (A true or B true) and we promote that result on line 14.  Line 15 follows from the premise on line 1.