Question 109200
{{{((y^2-3y-18)/(y^2-4))/((y^2+5y+6)/(y-2))}}} Start with the given expression



{{{((y^2-3y-18)/(y^2-4))*((y-2)/(y^2+5y+6))}}} Multiply the first fraction by the reciprocal of the second fraction



{{{(((y-6)(y+3))/(y^2-4))*((y-2)/(y^2+5y+6))}}} Factor {{{y^2-3y-18}}} to get {{{(y-6)(y+3)}}}  (note: if you need help with factoring, check out this <a href=http://www.algebra.com/algebra/homework/playground/change-this-name4450.solver>solver</a>)


{{{(((y-6)(y+3))/((y-2)(y+2)))*((y-2)/(y^2+5y+6))}}} Factor {{{y^2-4}}} to get {{{(y-2)(y+2)}}}  



{{{(((y-6)(y+3))/(((y-2))(y+2)))*((y-2)/((y+3)(y+2)))}}} Factor {{{y^2+5y+6}}} to get {{{(y+3)(y+2)}}}



{{{(((y-6)cross((y+3)))/(cross((y-2))(y+2)))*(cross((y-2))/(cross((y+3))(y+2)))}}} Cancel like terms



{{{(y-6)/((y+2)(y+2))}}} Simplify



{{{(y-6)/(y+2)^2}}} Collect like terms



So {{{((y^2-3y-18)/(y^2-4))/((y^2+5y+6)/(y-2))}}} simplifies to {{{(y-6)/(y+2)^2}}}