Question 108975
Simplify:2(S.ROOT)5+2(S.ROOT)5.
Assume you mean:
{{{2sqrt(5) + 2sqrt(5)}}} = {{{4sqrt(5)}}}; these are like terms just add 'em
:
Find the value of a if the points are the indicated distances apart.
:
Learn the distance formula: {{{d = sqrt((x2-x1)^2 + (y2-y1)^2)}}}
:
(2,a)and (-3,-2),when d=(S.ROOT)34. Substitute for x1,y1; x2,y2; and d
{{{sqrt(34) = sqrt((-3 - 2)^2 + (-2 - a)^2)}}}
:
Squaring both sides get rid of the radicals
{{{34 = (-3 - 2)^2 + (-2 - a)^2}}}
:
{{{34 = (-5)^2 + (-2 - a)^2}}}
:
{{{34 = 25 + (a^2 + 4a + 4)}}}; FOILed (-2-a)(-2-a)
:
Arrange as quadratic equation:
{{{a^2 + 4a + 4 + 25 - 34 = 0}}}
:
{{{a^2 + 4a - 5 = 0}}}
:
Factors to:
(a + 5)(a - 1) = 0
:
a = -5
and
a = +1
:
:
Find the distance between the two points given.Round to the nearest tenth,if necessary.(4,0)and(6,3)
{{{d = sqrt((6-4)^2 + (3-0)^2)}}}
:
{{{d = sqrt((2)^2 + (3)^2)}}}
Now you can do it
:
:
Find the distance between the two points given.Round to the nearest tenth,if necessary.(1,1)and(3,2),
{{{d = sqrt((3-1)^2 + (2-1)^2)}}}
Do this one the same way